Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))

The set Q consists of the following terms:

*(x0, +(x1, x2))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)

The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))

The set Q consists of the following terms:

*(x0, +(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)

The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))

The set Q consists of the following terms:

*(x0, +(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  x2
+(x1, x2)  =  +(x1, x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))

The set Q consists of the following terms:

*(x0, +(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.